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ADOPTION OF AN UNMANNED HELICOPTER FOR

LOW‐ALTITUDE REMOTE SENSING TO ESTIMATE

YIELD AND TOTAL BIOMASS OF A RICE CROP

K. C. Swain,  S. J. Thomson,  H. P. W. Jayasuriya

ABSTRACT. A radio‐controlled unmanned helicopter‐based low‐altitude remote sensing (LARS) platform was used to acquire
quality images of high spatial and temporal resolution in order to estimate yield and total biomass of a rice crop (Oriza sativa
L.). Fifteen rice field plots with five N treatments (0, 33, 66, 99, and 132 kg ha-1) having three replicates each were arranged
in a randomized complete block design for estimating yield and biomass as a function of applied N. Images were obtained
by image acquisition sensors mounted on the LARS platform operating at the height of 20 m over experimental plots. The rice
yield and total biomass for the five N treatments were found to be significantly different at the 0.05 and 0.1 levels of
significance, respectively, and normalized difference vegetation index (NDVI) values at panicle initiation stage were highly
correlated with yield and total biomass with regression coefficients (r2) of 0.728 (RMSE = 0.458 ton ha-1) and 0.760 (RMSE�=
0.598 ton ha-1), respectively. The study demonstrated the suitability of using LARS images as a substitute for satellite images
for estimating leaf chlorophyll content in terms of NDVI values (r2 = 0.897, RMSE = 0.012). The LARS system described has
potential to evaluate areas that require additional nutrients at critical growth stages to improve final yield in rice cropping.

Keywords. Biomass yield, NDVI, Nutrient stress, Remote sensing, Rice yield, Unmanned aerial vehicle, Vegetation index.

ice (Oriza sativa L.), which is the staple food of
most Asian countries, accounts for more than 40%
of caloric consumption worldwide (IRRI, 2006).
Annual rice production was approximately

590�million tons and yield was 4.21 ton ha-1 in Asia for 2006
(FAOSTAT, 2007). The profit from cultivating a rice crop is
derived from the crop grain yield and total biomass produced.
Predicting rice yield at or around the panicle initiation stage
would provide valuable information for future planning and
yield expectations. Application of precision agriculture (PA)
technology has become increasingly prevalent among the
farmers from developed countries as well as developing
countries due to its capability for optimizing crop yield by fa‐
cilitating sound crop status monitoring (Zhang and Taylor,
2001).

Assessment of leaf radiation has the potential to detect ni‐
trogen (N) deficiency and is a promising tool for N manage‐
ment and monitoring. Moreover, fertilizer application in
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excess of plant needs may result in surface runoff and pollu‐
tion of water bodies and streams (Wood et al., 1993; Auern‐
hammer et al., 1999; Daughtry et al., 2000). Chlorophyll is
an indirect indicator of nitrogen status and is used in optical
reflectance‐based  variable‐rate nitrogen application technol‐
ogy (Lee and Searcy, 2000; Jones et al., 2004; Alchanatis et
al., 2005; Kim and Reid, 2006; Min et al., 2008). Biermacher
et al. (2006) used sensor‐based systems to determine crop ni‐
trogen requirements and estimated that the variable‐rate sys‐
tem had the potential to achieve a net profit of about $22 to
$31 per ha. The ability to accurately estimate plant chloro‐
phyll concentration can provide growers with valuable infor‐
mation to estimate crop yield potential and to make decisions
regarding N management (Gamon and Surfus, 1999; Kahab‐
ka et al., 2004; Reyniers and Vrindts, 2006).

Spectroradiometry  has been useful in the research envi‐
ronment for determining principal wavebands and spectral
patterns that relate to nutrient stress (Noh et al., 2004; Tumbo
et al. 2001). High spectral resolution and the ability to ac‐
count for temporal changes are distinct advantages. Okamoto
et al. (2007) used a hyperspectral line‐scanning camera for
weed detection. This system produced hyperspectral images
from a Specim ImSpector V9 imaging spectrograph mounted
on a tractor that was set to move slowly through the field.
Principal spectral components could be extracted and ana‐
lyzed using various discrimination schemes. However, on‐
the‐go hyperspectral sensing may be difficult for practical
use, since enough area must be covered per sweep for timely
data acquisition over large field areas.

Prediction of yield using remote sensing images has been
practiced by many researchers. Rice crop area has been esti‐
mated from Landsat images (Tennakoon et al., 1992) for
wide‐scale yield prediction. Canopy reflectance was esti‐
mated at panicle initiation stage using a portable spectrora‐
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diometer (LI‐1800, LICOR) with a remote cosine receptor
attached to a 1.5 m extension arm for smaller‐scale yield pre‐
diction (Chang et al., 2005). Yield prediction has also been
accomplished for corn (Chang et al., 2003; Kahabka et al.,
2004), cotton (Thomasson et al., 2000), wheat (Doraiswamy
et al., 2003), and citrus (Zaman et al., 2006). Tea leaf yield
was estimated using vegetation indices such as normalized
difference vegetation index (NDVI) and triangular vegeta‐
tion index (TVI) (Rama Rao et al., 2007). Crop residue es‐
timation has been accomplished using RADARSAT images
(Jensen et al., 1990; McNairn et al., 1998), using LANDSAT
images (Thoma et al., 2004), and using images captured by
radio‐controlled model aircraft (Hunt et al., 2005).

The objective of this study is to determine the effective‐
ness of low‐altitude remote sensing (LARS) images obtained
by a multispectral imaging platform mounted in a radio‐
controlled unmanned helicopter to estimate rice yield and to‐
tal biomass as a function of varying nutrient availability.
Consistent with the fact that most multispectral cameras
small enough to be used in unmanned aerial vehicles utilize
pre‐defined wavebands for feature detection, applicability of
the widely used NDVI incorporating these wavebands is
evaluated.

LARS SYSTEM
The major constraint in PA adoption is the availability of

reliable data. Remote sensing images have many constraints
in terms of image quality and resolution, as well as timely
availability  of the images. Agricultural crops are biological
products, very sensitive to the environment and input nutrient
levels, which can affect the final outcome in terms of reduced
crop yield and/or quality. Therefore, the use of PA technology
is gaining momentum for agricultural crops for preventive
management.  Selective management of inputs characteristic
of PA promotes conservation of inputs while maintaining
crop viability. However, the application of satellite‐based im‐
ages still cannot fulfill the specific requirements of PA
technology. Stafford (2000) observed that images collected
from satellites for application to PA are handicapped in terms
of spectral and temporal resolution and can be affected by bad
weather conditions. Lamb and Brown (2001) indicated that
the low‐resolution images from satellites, only beneficial for
large‐scale studies, are not appropriate for the small‐scale
farms prevalent in many areas of Asia, for example. Addi‐
tionally, satellites providing higher‐resolution images, e.g.,
QuickBird (DigitalGlobe, Longmont, Colo.) and ASTER
(National Aeronautics and Space Administration, Washing‐
ton, D.C.), have long revisit times, making them of limited
utility for any application that might require frequent images
(nutrient stress monitoring, for example).

LARS is a relatively new concept of remote image ac‐
quisition currently discussed by the agriculturists involved in
precision agriculture technology. As the name suggests, it is
a system of acquiring images of the earth surface from a lower
altitude as compared to the commercial remote sensing satel‐
lites. In this system, the images are acquired mostly below
cloud cover and very near field features of interest. Low‐
altitude remote sensing using unmanned aerial vehicles can
be an inexpensive and practical substitute for sophisticated
satellite and general aviation aircraft, and it is immediately
accessible as a tool for the farmer.

Various unmanned LARS systems have been developed
and used in the remote image acquisition for PA applications.
Some LARS platforms have been kites (Aber et al., 2002),
balloons (Amoroso and Arrowsmith, 2000; Seang and Mund,
2006), high‐clearance tractors (Bausch and Delgado, 2005),
and unmanned airplanes and helicopters (Sugiura et al.,
2002; Fukagawa et al., 2003; Eisenbiss, 2004; Herwitz el al.,
2004; Sugiura et al., 2004; Hunt et al., 2005; MacArthur et al.,
2005, 2006; Xiang and Tian, 2006, 2007a, 2007b; Huang et
al., 2008). These platforms were mounted with image ac‐
quisition devices and location measuring receivers, which
can fly over agriculture farms and targeted areas for capturing
images. Thomson and Sullivan (2006) observed that both
agricultural  aircraft and unmanned aerial vehicles (UAVs)
are potentially more easily scheduled and accessible remote
sensing platforms than the remote sensing satellites and gen‐
eral aviation aircraft customarily used in the U.S. However,
use of agricultural aircraft is limited to those areas where ae‐
rial crop spraying is prevalent. Hunt et al. (2005) used a radio‐
controlled helicopter‐mounted image acquisition system to
estimate biomass and nitrogen status for corn, alfalfa, and
soybean crops. Digital photographs have been used for site‐
specific weed control for grassland swards (Gebhardt et al.,
2006; Beerwinkle, 2001) and for tomato (Zhang et al., 2005).
Chen et al. (2003), using an high‐elevation tractor system, in‐
dicated that multi‐spectral images at 555, 660, and 680 nm
wavelength band centers demonstrated good prediction abili‐
ty for determining the nitrogen content of rice plants.

METHODOLOGY
THEORETICAL CALCULATIONS

The normalized difference vegetation index (NDVI)
(Rouse et al., 1973; Fablo and Felix, 2001; Zhang et al., 2003;
Chang et al., 2005) is the most widely adopted vegetation in‐
dex for agricultural cropping and vegetation studies. Alvaro
et al. (2007) used the NDVI and SR (simple ratio) to estimate
total biomass for four cereal crops (barley, bread wheat, du‐
rum wheat, and triticale). The NDVI is popular because it is
robust (Schmaltz, 2005), requires no atmospheric correc‐
tions, and reduces the impact of sunlight intensity variations.
This index, evaluated herein for its suitability for determin‐
ing yield and biomass of rice, is defined as:

 
RNIR

R-NIR
NDVI

+
=  (1)

where
NIR = spectral reflectance value for the near‐infrared

band
R = spectral reflectance value for the red band.
Equation 1 was used to estimate the NDVISpectro and

NDVILARS values for the spectroradiometer readings and
LARS image readings, respectively. Rice yield was esti‐
mated at 14% moisture content (MC) for each treatment
(Field crop report, 1998):
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where
MC = moisture content (% wet basis)
RW= weight of rice (kg)
A = harvested area (m2).
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FIELD PREPARATION
In this study, images taken by a LARS system were ana‐

lyzed to determine their suitability for estimating rice yield
and biomass as a function of applied nitrogen. Nitrogen fertil‐
izer was applied at five rates: 0%, 25%, 50%, 75%, and 100%
of recommended values, representing 0, 33, 66, 99, and
132�kg ha-1, respectively. Plots with different nitrogen rates
were maintained to promote a wide range of rice yield so the
effectiveness of LARS images could be evaluated for varying
nutrient availability. This follows a similar technique by
Chen et al. (2003), who used four N rates (0, 45, 90, and
135�kg ha-1) in field experiments with a Tainung 67 rice crop
for multispectral image analysis.

The experimental site was located in Pathumthani Prov‐
ince, Thailand (14° 12′ N, 100° 37′ E). The soil of the experi‐
mental site belonged to the clay textural class with a bulk
density of 1.38 g cm-3 and pH of 4.2. Three replicates were
made, and the treatment plots, each of size 10 m × 10 m, were
randomly distributed within each replicate. To estimate the
nitrogen application rate, the total nitrogen present in the soil
was tested using standard methods (Kjeldahl apparatus). It
was found that the concentration of pre‐existing nitrogen was
low (<0.18%) for all the plots, per the local Agricultural Ex‐
tension Service guidelines. The plots were well‐watered us‐
ing flood irrigation and carefully maintained for pest control
to ensure uniform yield potential. The rice seeds were broad‐
casted (on 14 Dec. 2006) in accordance with local practices
under irrigated farming conditions. An early rice variety,
Supanburi‐1 (95 day period), was used in the study, as this is
the most popular variety in central Thailand. Urea (46‐0‐0)
was applied as the source of nitrogen for the study. Different
nitrogen rates along with recommended phosphorous fertiliz‐
er were applied 30 days after sowing rice.

EQUIPMENT

For the study, a remote‐controlled model helicopter
(X‐Cell Fury 91, Miniature Aircraft, Billings, Mont.) was
equipped with a Tetracam agricultural digital camera (ADC)
(Tetracam, Inc., Chatsworth, Cal.) (table 1). This camera is
a wideband multispectral camera utilizing a CMOS CCD
(charge‐coupled device) with a Bayer filter mask for multi‐
spectral imaging. The unmanned helicopter weighed about
6�kg with a payload capacity of 5 kg. The radio console was
capable of controlling the unmanned helicopter within a 1 km
radius. The system used a battery‐initiated glow fuel
(250�mL) engine, supporting 15 min of flight. A spectrora‐
diometer with wavelength range of 350 to 2350 nm (Spectra
Co‐op, Inc., Tokyo, Japan) was used to estimate reflectance
at ground level in the red (at 660 nm) and NIR bands (at
800�nm). Bandwidth at each center was 2.5 nm.

Table 1. Specification of the Tetracam ADC green‐red‐NIR sensors.

Characteristics Values

Image size (resolution) 1280 × 1024 (1.3 Mpixel)

Pixel size 6.01 micron

Ground pixel resolution 0.000707 m/pixel (estimated)

Spectral bands

3 (green, red, and NIR); band centers and 
bandwidths are fundamentally equivalent 
to Landsat bands TM2, TM3, and TM4

Lens type C‐mounted

Lens 8.5 mm

Triggering Manual/cable switch triggering

DATA ACQUISITION
Images were obtained with the LARS system just before

panicle initiation stage (65 days after planting, fig. 1). Field
images were acquired at an altitude of 20 m. This altitude was
selected considering the camera's field of view to acquire a
single image for each treatment plot. Images with effective
dimensions of 18 m × 14 m were collected from a 20 m flying
height, covering a single plot. Flight altitude was recorded
with a height sensor (MPXAZ4115A barometric sensor,
Freescale Semiconductor, Austin, Tex.) mounted on the
LARS system. Images were obtained at five different heights,
and the images obtained closest to the 20 m height were se‐
lected for analysis. Five ground‐based reflectance readings
were obtained for the rice canopy and BaSO4 standard white
reference board using the spectroradiometer in each of the
experimental  plots. The ground‐based readings were ob‐
tained immediately after the LARS system‐based image ac‐
quisition. The plotwise ground‐based reflectance value was
calculated as the mean of the five readings.

IMAGE PROCESSING

Multispectral  images acquired by the Tetracam ADC
camera (.dcm format) were converted into .tiff format for
analysis. Images were uploaded to Pixelwrench software (Te‐
tracam, Inc., Chatsworth, Cal.), which contains programs for

(a)

(b)

Figure 1. LARS system operation: (a) acquiring image in rice crop, and
(b) R/C helicopter mounted with image acquisition system.
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 (a)     (b)     (c)

Figure 2. Stages of image processing: (a) raw image with plot boundaries (as taken by the image acquisition system), (b) plot‐scale image of the rice
crop, and (c) NDVI image of the plot.

deriving one of several vegetation indices (.hdr format) from
raw image data. An NDVI image was produced for each test
plot, and the average NDVI index was estimated using a
custom‐developed program in the C programming language
from images acquired by the LARS‐mounted sensors (fig. 2).
Ground‐based reflectance data were collected to estimate
mean NDVI of the experimental plots (NDVISpectro).
NDVISpectro was estimated using the software provided by
the spectroradiometer manufacturer. Linear regression mod‐
els were developed in SAS (ver. 9.1, SAS Institute, Inc., Cary,
N.C.).

RESULTS AND DISCUSSION
STATISTICAL ANALYSIS OF DATA

The rice crop was harvested from three sample areas of
4�m2 from each plot, 102 days after sowing for this experi‐
ment. The moisture content (% w.b.) at the time of weighing
was estimated using a field moisture meter (Kett PM600,
Ohta‐Ku, Tokyo, Japan). The yield of each plot (100 m2 area)
was estimated as the average of three sampled areas and con‐
verted to a ton‐per‐hectare area at 14% moisture content us‐
ing equation 2. Rice yield ranged from as low as 1.88 ton ha-1

(0 kg ha-1 N) to 3.68 ton ha-1 (132 kg ha-1 N) based on a 14%
MC, illustrating the effectiveness of the fertilizer treatment
rates on rice yield (table 2). Total oven‐dried biomass ranged
from 3.58 to 7.36 ton ha-1 for the different treatments
(table�3).  The crop yield and biomass dry weights were also
tested for statistical significance (Johnson and Bhattachary‐
ya, 2001). Yield data between the treatments showed signifi‐
cant differences at the 0.10 and 0.05 levels, whereas
differences were not significant among the replicates
(table�4).  Total dry biomass weight between the treatments
showed significant differences at the 0.10 level but not be‐
tween replicates (table 5).

SUITABILITY OF NDVI IN ANALYSIS OF LARS IMAGES
The graph of NDVISpectro and NDVILARS for the different

N treatments indicated good correlation (r2 = 0.897, RMSE�=
0.012) with the increase in recommended nitrogen rates
(fig.�3) for all three replicates. The trend indicates the influ‐
ence of N treatment rate on crop leaf reflectance through leaf
chlorophyll content (Lee et al., 2002). The range of
NDVILARS indices showed higher values compared with
NDVISpectro readings. This may have been due to noise
caused by reflectance of exposed soil along with rice crop
leaves during data collection using the spectroradiometer, al‐
though care was taken to minimize these errors in the field.

Table 2. Rice yield (ton ha-1) of the experimental plots.

N Rate
Treatment

Replicate

Average1 2 3

0 kg ha‐1 1.88 1.97 1.64 1.83
33 kg ha‐1 2.13 2.87 3.28 2.76
66 kg ha‐1 2.78 2.70 3.44 2.97
99 kg ha‐1 2.37 3.85 3.52 3.25

132 kg ha‐1 3.52 3.36 3.68 3.52

Table 3. Total biomass (ton ha-1) of the experimental plots.

N Rate
Treatment

Replicate

Average1 2 3

0 kg ha‐1 3.58 4.25 6.30 4.710
33 kg ha‐1 5.51 5.84 5.64 5.660
66 kg ha‐1 5.57 5.97 5.77 5.771
99 kg ha‐1 6.50 7.36 5.97 6.611

132 kg ha‐1 5.57 6.63 7.30 6.501

Table 4. Randomized block ANOVA analysis table for rice yield.

Source
Sum of
Squares df

Mean
Square

F‐Ratio
(estimate)

F‐tabulated

α = 0.05 α = 0.10

Treatment 5.030 4 1.2576 7.006** 3.84 2.81
Replicate 0.873 2 0.4365 2.432 4.46 3.11
Residual 1.436 8 0.179

** = Significant at the 0.05 level.

Table 5. Randomized block ANOVA analysis table for total biomass.

Source
Sum of
Squares df

Mean
Square F‐Ratio

F‐tabulated

α = 0.05 α = 0.10

Treatment 7.036 4 1.759 3.015* 3.84 2.81
Replicate 1.992 2 0.996 1.708 4.46 3.11
Residual 4.667 8 0.583

* = Significant at the 0.10 level.

ESTIMATION OF RICE YIELD USING NDVILARS INDEX
The regression model developed for rice yield with NDVI

index value in SAS 9.1 indicated a good fit (r2 = 0.728,
RMSE�= 0.458 ton ha-1, fig. 4). Variation among the repli‐
cates might be due to initial nutrient levels present in the soil
from randomly selected plots.

ESTIMATION OF TOTAL BIOMASS FROM NDVILARS INDEX
The plot‐wide total biomass weight of rice crop was deter‐

mined for N treatments in each replicate, and then converted
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Figure 3. Variation of NDVI values measured from spectroradiometer
reading and LARS images for different N treatments. Each of the five
points represents a different rate of applied N.
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Figure 4. Estimation of rice yield with NDVILARS values.
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Figure 5. Estimation of biomass with NDVILARS values.

to a per‐hectare basis. Linear calibrations were developed in
SAS to estimate the biomass from NDVI index values calcu‐
lated from LARS images. From these results, NDVILARS
could explain 76% of the variation in biomass weight (r2 =
0.760, RMSE = 0.598 ton ha-1, fig. 5).

SYSTEM COST ESTIMATES

For feasibility and practical use of a system like this, it
may be instructive to provide an estimate of both system costs
and operating costs. Total cost of the system was $15,000
USD, which included the major components: unmanned heli‐
copter, landing skid, ADC camera, microprocessor and GPS
receiver, magnetic compass, IMU, and altitude sensors. As‐
suming the same figures for other agricultural equipment can
be used, 10% of the total cost can be allotted for repair and
maintenance  (Wahby and Al‐Suhaibani, 2001; Rotz and

Bowers, 1991). An additional 10% of total cost is also al‐
lotted for miscellaneous expenditures associated with the
system. Therefore:

Total cost = $15,000 USD

+ (0.10 × $15,000 USD)

+ (0.10 × $15,000 USD)

= $18,000 USD
The initial cost of a LARS is quite low, but data analysis

and image interpretation costs should also be considered.
Costs for a system like this could be well within reach of
farmers in developing countries if they pool their resources
(form a cooperative). Countries with larger farmed areas
could also benefit from use of unmanned aerial systems if
high‐resolution cameras are used and radio frequency (RF)
range is extended to allow higher‐altitude flight over large
field areas.

SUMMARY AND CONCLUSIONS
A radio‐controlled helicopter‐based LARS system was

used to acquire multispectral images over a rice canopy to es‐
timate rice yield. The study indicated that the LARS platform
could substitute for satellite‐based and costly airborne re‐
mote sensing methods for estimation of yield and biomass as
a function of nutrient status for rice, a staple crop in develop‐
ing countries. Images were be obtained successfully by the
multispectral  camera mounted on a radio‐controlled helicop‐
ter at a height of 20 m over rice plots. Rice yield and total bio‐
mass were found to be significantly different at the 0.05 and
0.1 significance levels, respectively, under different N treat‐
ment regimes. The relationship between NDVILARS and
NDVISpectro (r2 = 0.897, RMSE = 0.012) indicated the appli‐
cability of LARS sensor‐based images for estimating NDVI
values, which varied over the five levels of applied N. A lin‐
ear regression model showed a good fit (r2 = 0.728, RMSE =
0.458 ton ha-1) for estimating total biomass for rice using
LARS image‐based NDVI values. A linear model (r2 = 0.760,
RMSE = 0.598 ton ha-1) indicated that rice yield could be
predicted with NDVI values derived from LARS images.

Modeled yield projections can evaluate areas that require
additional nutrients at critical growth stages to improve final
yield in rice cropping. This study could be extended further
for different rice varieties along with nitrogen treatment
rates. The regression model procedure outlined herein can be
followed for larger rice fields by recording crop input rates
and acquiring LARS images. The rice variety (Supanburi‐1)
is a three‐month crop with harvesting time that varies be‐
tween 95 and 110 days. Imaging with the LARS system was
accomplished at panicle initiation stage, i.e., 65 days of sow‐
ing.

Yield variation maps can be developed for the entire field
well before the rice crop is harvested. Such maps could pro‐
vide specific information about the expected rice yield pat‐
tern from the field. Furthermore, low‐yielding areas could be
identified and remedial treatments, such as additional nutri‐
ent (N), could be applied. The time window normally avail‐
able for crop scouting of yield‐restricting factors and
application of preventive measures is very limited. A low‐
cost LARS system would be well‐suited for quick image ac‐
quisition and data analysis for proper assessment of crop
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growth. Good correlation between biomass and image data
were also indicated in this study. Rice straw has been used as
a major cattle feed (Abdulla et al., 1992; Kennedy, 1995) in
various parts of the world. The information could assist in as‐
sessing the amount of biomass expected from the rice crop
well in advance (one month before harvesting).
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